Vocabulary Cards and Word Walls

Revised: June 2, 2011

Important Notes for Teachers:

- The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education, August 2010.
- The cards are arranged alphabetically.
- Each card has three sections.
- Section 1 is only the word. This is to be used as a visual aid in spelling and pronunciation. It is also used when students are writing their own "kid-friendly" definition and drawing their own graphic.
- Section 2 has the word and a graphic. This graphic is available to be used as a model by the teacher.
- Section 3 has the word, a graphic, and a definition. This is to be used for the Word Wall in the classroom. For more information on using a Word Wall for Daily Review - see "Vocabulary - Word Wall Ideas" on this website.
- These cards are designed to help all students with math content vocabulary, including ELL, Gifted and Talented, Special Education, and Regular Education students.

For possible additions or corrections to the vocabulary cards, please contact the Granite School District Math Department at 385-646-4239.

Bibliography of Definition Sources:
Algebra to Go, Great Source, 2000. ISBN 0-669-46151-8
Math on Call, Great Source, 2004. ISBN-13: 978-0-669-50819-2
Math at Hand, Great Source, 1999. ISBN 0-669-46922
Math to Know, Great Source, 2000. ISBN 0-669-47153-4
Illustrated Dictionary of Math, Usborne Publishing Ltd., 2003. ISBN 0-7945-0662-3
Math Dictionary, Eula Ewing Monroe, Boyds Mills Press, 2006. ISBN-13: 978-1-59078-413-6
Student Reference Books, Everyday Mathematics, 2007.
Houghton-Mifflin eGlossary, http://www.eduplace.com
Interactive Math Dictionary, http://www.amathsdictionaryforkids.com/

addend

addend

$33+4.7+0.9=38.6$
 addends

addend

 Any number being
 added.
 addends

algorithm

Partial Product Example

algorithm
 555
 $\begin{array}{r}\mathrm{x} 7 \\ \hline 35\end{array}$
 350
 3500 Step 3: Multiply the hundreds.
 3885 Step 4: Add the partial products.

Partial Product Example

algorithm
 555
 $\begin{array}{r}\mathrm{x} 7 \\ \hline 35\end{array}$
 Step 1: Multiply the ones.
 Step 2: Multiply the tens.
 3500 Step 3: Multiply the hundreds.
 3885 Step 4: Add the partial products.

Step-by-step method for computing.

area

$\mathbf{2}$ rows of $5=10$ square units
 or

area

2 rows of $5=10$ square units or

$2 \times 5=10$ square units

area

The measure, in square units, of the interior region of a 2 dimensional figure or the surface of a
3-dimensional figure.

area model

$20+8$
 area model

$9 \times 28=(9 \times 20)+(9 \times 8)=252$

A model of multiplication that shows each place value product

array

array

3 rows of 4 or
3×4

array

$\begin{array}{cc}3 \text { rows of } 4 & 0 \\ \text { or } & 0 \\ 3 \times 4 & 0\end{array}$

An arrangement of objects in equal rows.

Associative Property of

Addition

Associative Property of Addition

$$
\begin{aligned}
(5+7)+3 & =5+(7+3) \\
12+3 & =5+10 \\
15 & =15
\end{aligned}
$$

Associative Property of Addition

$$
\begin{aligned}
(5+7)+3 & =5+(7+3) \\
12+3 & =5+10 \\
15 & =15
\end{aligned}
$$

The sum stays the same when the grouping of addends is changed.
$(a+b)+c=a+(b+c)$, where a, b, and c stand for any real numbers.

Associative Property of

 MultiplicationAssociative
Property of
Multiplication

$$
\begin{aligned}
(5 \times 7) \times 3 & =5 \times(7 \times 3) \\
35 \times 3 & =5 \times 21 \\
105 & =105
\end{aligned}
$$

Associative Property of Multiplication

$$
\begin{aligned}
(5 \times 7) \times 3 & =5 \times(7 \times 3) \\
35 \times 3 & =5 \times 21 \\
105 & =105
\end{aligned}
$$

The product stays the same when the grouping of factors is changed. (a $\mathrm{x} b) \times c=a \times(b \times c)$, where $a, \mathrm{~b}$, and c stand for any real numbers.

attribute

attribute

large

pink

A characteristic.
e.g. size, shape or color

axis

axis

axis

A reference line from
which distances or angles are measured in a coordinate grid.
(plural - axes)

base of an exponent

base of an exponent

base of an exponent

The number that is raised to a power. In $10^{4}, 10$ is the base and 4 is the exponent. 10 is raised to the power of 4. $\left(10^{4}=10 \times 10 \times\right.$ $10 \times 10=10,000)$

base of a solid figure

base of a solid figure

base of a solid figure

A base of a solid figure is usually thought of as a face upon which it can "sit." Most solid figures have more than one base.

benchmark fractions

benchmark
 1
 1
 2 3 fractions

benchmark fractions $\quad \overline{4} \quad \overline{3} \quad \overline{2} \quad \overline{3} \frac{-}{4}$

Fractions that are commonly used for estimation.

braces

braces

Braces can be used to indicate that the objects written between them belong to a set.

brackets

brackets
 $[(2 \times 20)+6]$

A type of grouping
brackets [(2 x 20) + 6] symbol used in pairs that tells what operation to complete first.

centimeter (cm)

centimeter

 (cm)

centimeter

 (cm)

A metric unit of length equal to 0.01 of a meter.

Commutative Property

 of Addition

 of Addition}

Commutative

 Property of $\quad 5+3=3+5$ Addition
Commutative

Property of $5+3=3+5$

The sum stays the same when the order of the addends is changed. $a+b=b+a$, where a and b are any real numbers.

Commutative Property

of Multiplication

Commutative Property of Multiplication

Commutative Property of Multiplication

$$
4 \times 7=7 \times 4
$$

The product stays the same when the order of the factors is changed. $a \times b=b \times a$, where a and b are any real numbers.

compose

compose

2 triangles can form a rectangle

compose

To put together, as in numbers or shapes.

coordinate plane

coordinate plane

coordinate plane

A 2-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes. (Also called coordinate grid or coordinate system.)

coordinate system

coordinate

coordinate

 systemAlso known as a coordinate grid. A
2-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes.

coordinates

coordinates

$(3,2)$
(x, y)

coordinates

$(3,2)$
(x, y)

An ordered pair of numbers that identify a point on a coordinate plane.

corresponding terms

corresponding terms

8	$1^{\text {st }}$ Term	$2^{\text {nd }}$ Term	$3^{\text {rd }}$ Term	$4^{\text {th }}$ Term
Add 3	3	6	(9)	12
Add 6	6	12	18	24

corresponding terms

Terms that are in the
same position in a sequence of numbers.

In the pattern shown, 9 and 18 are the 3rd terms in each sequence-they are corresponding terms.

cubic unit

cubic unit

A unit such as a cubic meter to measure volume or capacity.

customary system

customary system

customary

 systemA system of
measurement used in the U.S. The system includes units for measuring length, capacity, and weight.

data

data

Number of School Carnival Tickets Sold	
Kindergarten	22
$1^{\text {st }}$ Grade	15
$2^{\text {nd }}$ Grade	34
$3^{\text {rd }}$ Grade	9
$4^{\text {th }}$ Grade	16
$5^{\text {th }}$ Grade	29
$6^{\text {th }}$ Grade	11

data

Number of School Carnival Tickets Sold	
Kindergarten	
$1^{\text {st }}$ Grade	22
$2^{\text {nd }}$ Grade	15
$3^{\text {rd }}$ Grade	34
$4^{\text {th }}$ Grade	9
$5^{\text {th }}$ Grade	16
$6^{\text {th }}$ Grade	29

Information, especially numerical information.
Usually organized for analysis.

decimal

decimal

$\$ 29.4553 .0$ 0.02

A number with one or more digits to the right of a decimal point. Decimal is used as another name for decimal fraction.

decimal point

decimal $\begin{array}{cc}\$ 1.55 & 3.2 \\ \text { decimal points }\end{array}$

decimal
 \$1.55
 decimal points

A dot separating the whole number from the
fraction in decimal notation.

decompose

decompose

decompose

To separate into components or basic elements.

denominator

denominator

denominator

The quantity below the line in a fraction. It tells the number of equal parts into which a whole is divided.

difference

difference
 $49.75-13.9=35.85$
 difference

difference

$49.75-13.9=35.85$

difference

The amount that remains after one quantity is subtracted from another.

Distributive Property

Distributive

 Property
$6 \times 14=6 \times(10+4) *$ Break up the 14 into $10+4$

Distributive Property

When one of the factors of a product is a sum, multiplying each addend before adding does not change the product.

dividend

dividend

$8 \longdiv { 5 7 8 }$
 1 dividend

dividend

A quantity to be divided.

divisor

divisor

The quantity by which another quantity is to be divided.

equation

equation

These expressions balance the scale because they are equal.

A statement that two mathematical expressions are equal.

equivalent fraction

equivalent fraction

Fractions that have the same value.

estimate

Close to 1
 Close to 1
 estimate
 \downarrow
 3

A number close to an exact amount, an estimate tells about how much.

evaluate

evaluate

$$
\begin{gathered}
42-13=n \\
n=29
\end{gathered}
$$

$42-13=n$

evaluate

To find the value of a mathematical expression.

expanded form

expanded form

$347.392=$
$3 \times 100+4 \times 10+7 \times 1+$ $3 \times(1 / 10)+9 \times(1 / 100)+$ $2 \times(1 / 1000)$

expanded form

```
\(347.392=\) \(3 \times 100+4 \times 10+7 \times 1+\) \(3 \times(1 / 10)+9 \times(1 / 100)+\) \(2 \times(1 / 1000)\)
```

A way to write numbers that shows the place value of each digit.

exponent

exponent

$10 \times 10 \times 10 \times 10=10,000$

exponent

The number that tells the number of times the base is multiplied by itself.

expression

expression

no equal sign.

$\operatorname{expression} \quad x+3$
 no equal sign.

A variable or combination of variables, numbers, and symbols that represents a mathematical relationship.

factor

factor
 $2 \times 6=12$
 V
 factors

factor
$2 \times 6=12$
\uparrow
An integer that divides
evenly into another.
factors

finite decimal

finite

decimal

Example:

finite
decimal

Example:

A decimal that contains a terminating number of digits. (Also called a terminating decimal.)

formula

formula

A general equation or rule. You can use a formula to find volume in a rectangular prism.

greater than

greater than

$5>3$
greater than

Greater than is used to compare two numbers when the first number is larger than the second number.

hundredth

hundredth

One of 100 equal parts of a whole.

hundredths

hundredths

In the decimal numeration system, hundredths is the name of the next place to the right of tenths.

improper fraction

improper fraction

 Greater than
 (or equal to) denominator

improper fraction

$\longleftarrow \quad$ Greater than (or equal to) denominator

A fraction where the numerator is greater than or equal to the denominator.

inequality

inequality

These expressions do not balance the scale because they are not equal.

ตคค

These expressions do not balance the scale because they are not equal.

A mathematical sentence that compares two unequal expressions using one of the symbols $<,>$, or \neq. e.g. $26>13$; $13<26 ; 2+4<6+3$

intersect

intersect

intersect

To meet or cross.

less than

less than

$3<5$

Less than is used to compare two numbers when the first number is smaller than the second number.

like denominators

$$
\begin{array}{cccc}
\text { like } & \frac{3}{8} & \frac{7}{8} & \frac{7}{8} \\
\text { denominators } & \frac{1}{8}
\end{array}
$$

like denominators

Denominators in two or more fractions that are the same.

line plot

line plot

line plot

A diagram showing frequency of data on a number line.

long division

long
 $\underset{\frac{-69}{73}}{\substack{332 \\ 7636 \\ 0}}$
 division
 $\begin{array}{r}-69 \\ -46 \\ -46 \\ \hline 0\end{array}$

 -69
 $\frac{-46}{0}$

A standard procedure suitable for dividing simple or complex multidigit numbers.

lowest terms

lowest terms

\square 4
8

$\frac{4}{8}$ in lowest terms is $\frac{1}{2}$

lowest terms

\square
 1
2
$\frac{4}{8}$ in lowest terms is $\frac{1}{2}$

A fraction where the numerator and denominator have no common factor greater than 1.

meter (m)

meter (m)

A baseball bat is about 1 meter long.

HQ

A standard unit of length in the metric system.

metric system

 metric system
metric system

A system of measurement based on tens. The basic unit of capacity is the liter. The basic unit of length is the meter. The basic unit of mass is the gram.

millimeter (mm)

millimeter

(mm)

The dot on a ladybug is about
1 millimeter wide.

millimeter

 (mm)

A metric unit of length.
1,000 millimeters $=1$ meter

1 millimeter wide.

minuend

minuend

$43.2-27.9=15.3$
 minuend

43.2-27.9 = 15.3 \quad In subtraction, the minuend is the
 number you subtract from.
 minuend

mixed number

mixed number

Example:

mixed number

A number with an integer and a fraction part.

Multiplicative Identity Property of 1

Multiplicative Identity Property of 1

Multiplicative
 Identity Property of 1

1 group of $3=3$ $1 \times 3=3$

Multiplying a number by one gives a product identical to the given number. Also known as Identity Property of Multiplication.

numerator

numerator

$\frac{4 \leftarrow_{\text {numerator }}}{5 \star \star}$ numerator

The number or

Order of Operations

Order of Operations

How to do a math problem with more than one operation with more than one oper
in the correct order.
$P_{\text {arentusssis }}$
$E_{\text {popenels }}$
$\mathbf{M}_{\text {ulpy }} \boldsymbol{D}_{\text {Dibe }}$
$A_{s t+} \mathbf{S}_{\text {tutad }}$

Order of Operations

An order, agreed on by mathematicians, for performing operations to simplify expressions.

ordered pair

ordered

 pair
$(3,2)$
(x, y)
ordered pair

$(3,2)$
(x, y)

A pair of numbers that gives the coordinates of a point on a grid in this order (horizontal coordinate, vertical coordinate).

origin

origin

The intersection of the x and y-axes in a coordinate plane, described by the ordered pair (0,0).

parentheses

parentheses
()
$(2+3) \times 4$
5×4
20
parentheses
()

$(2+3) \times 4$
 5×4
 20

Used in mathematics as grouping symbols for operations. When simplifying an expression, the operations within the parentheses are performed first.

perpendicular

perpendicular

Forming right angles.

place value

place value

MLLIONS			
hundred millions	ten millions	millions	
7	4	5	

place value

MLLIONS			THOUSANDS			ONES		
hundred millions	$\begin{gathered} \text { ten } \\ \text { militions } \end{gathered}$	millions	hundred thousands	$\begin{array}{\|c\|} \hline \text { then } \\ \text { thousands } \end{array}$	thousands	hundrads	tens	ones
7	4	5	3	0	9	2	8	1

The value of the place
of a digit in a number.

plane

plane

A flat surface that extends infinitely in all directions.

powers of ten

powers of

ten

10000	$=10^{4}$
1000	$=10^{3}$
100	$=10^{2}$
10	$=10^{1}$
1	$=10^{\circ}$

wers of	$\begin{aligned} & 10000000 \\ & 1000 \\ & 100 \end{aligned}$
	10

Using a base number of 10 with an exponent. Our number system is based on the powers of 10.

product

product

Sunglasses are $\mathbf{\$ 9 . 9 5}$
a pair.
product

$\$ 9.95$
$\mathbf{x} \quad 3$
$\$ 29.85$
$\mathbf{~}$

product

The result of multiplication.

proper fraction

proper fraction

proper fraction

less than the denominator

A fraction less than one. In a proper fraction the numerator is less than the denominator.

quadrants

The four sections of a coordinate grid that are separated by the axes.

quotient

quotient
$\mathrm{C}_{\mathbf{9}}^{\mathbf{1 3}} \boldsymbol{1 5 \mathrm { r } . 2}$
quotient
quotient
\searrow
15 r. 2
$9 \longdiv { 1 3 7 }$

The result of the division
of one quantity by another.

remainder

remainder remainder

remainder

The number that is left over after a whole number is divided equally by another.

right rectangular prism

right rectangular prism

right rectangular prism

A prism with six rectangular faces where the lateral edge is perpendicular to the plane of the base.

right triangle

right
triangle
right triangle

A triangle that has one
90° angle.

rounding

rounding
 $45.357 \longrightarrow 45.4$

To strategy to find about how much or how many
rounding $\quad 45.357 \rightarrow 45.4$ by expressing a number closest to ten, hundred, thousand, or tenth, hundredth, thousandth,

scaling

scaling
 3×2
 $3 \times \frac{1}{2}$
 000
 Note: Product is greater than 3.

 Note: Product is less than 3.

3×2
 scaling

Note: Product is greater than 3.

Note: Product is less than 3.

sequence

$2,5,8,11,14,17 \ldots$
 sequence
 What is the pattern?

sequence

$2,5,8,11,14,17 \ldots$
What is the pattern?

A set of numbers arranged in a special order or pattern.

simplest form

simplest form

A fraction in simplest form has the fewest possible pieces.
simplest form

A fraction in simplest form has the fewest possible pieces.

A fraction is in simplest form when the greatest common factor of the numerator and denominator is 1 .

simplify

simplify

simplify

To express a fraction in simplest form.

solid figure

solid figure

A geometric figure with 3 dimensions.

standard form

standard

 form
354,973

standard

 formA number written with one digit for each place value.

subtrahend

subtrahend

subtrahend | 27.34 |
| :--- |
| |
| |
| 19.05 |
| 19.05 |

In subtraction, the subtrahend is the number being subtracted.

sum

sum

$45.3+92.9=138.2$ sum

$45.3+92.9=138.2$

sum

The result of addition.

tenth

tenth

One of the equal parts when a whole is divided into 10 equal parts.

tenths

tenths

In the decimal
 numeration, tenths is the name of the place to the right of the decimal point.

term

$x+14$
 term

$x+14$
term

A number, variable, product, or quotient in an expression. A term is not a sum or difference.

thousandth

thousandth

```
0.001 or }\frac{1}{1000
```


One of 1000 equal parts
of a whole.

thousandths

thousandths

0.276

Thousandths is the name

thousandths

of the next place to the right of hundredths in the decimal numeration

three-dimensional figures

three-dimensional figures

threedimensional figures

A geometric figure that has length, width, and height.

tiling

tiling

Repeated shapes that fill a plane. The shapes do not overlap and there are no gaps.

tiling

$$
\frac{2}{3} \text { of } \frac{3}{4}=\frac{6}{12}
$$

You can find the area of a rectangle with fractional lengths by tiling it with appropriate unit squares. The green area represents

$$
\frac{2}{3} \times \frac{3}{4}=\frac{6}{12}
$$

two-dimensional figures

two-dimensional figures

twodimensional figures

Having length and width. Having area, but not volume. Also called a plane figure.

unit cube

unit cube
 Volume of 1 cubic (cm^{3}) centimeter

unit cube

 A precisely fixed quantity used to measure volume.

unit fraction

Example
 unit fraction

unit fraction

A fraction with a numerator of 1 .

unlike denominators

unlike
 denominators
 111
 $3 \quad 4 \quad 5$

unlike
denominators

$\frac{1}{3} \frac{1}{4} \frac{1}{5}$

Denominators that

volume

volume

Volume =
 27 cubic units

volume

Volume =
27 cubic units

The number of cubic units it takes to fill a figure.

whole numbers

$$
\begin{array}{cc}
\text { whole } & { }^{146} \\
\text { numbers } & 7_{10}^{55}
\end{array}
$$

whole numbers

Whole numbers are zero and the counting numbers 1 , $2,3,4,5,6$, and so on. If a number has a negative sign, a decimal point, or a part that's a fraction, it is not a whole number.

\boldsymbol{x}-axis

\boldsymbol{x}-axis

\boldsymbol{x}-axis

In a coordinate plane, the horizontal axis.

x-coordinate

(7,2)
 x-coordinate

In an ordered pair, the value that is always
written first.

y-axis

y-axis

y-axis

In a coordinate plane, the vertical axis.

y-coordinate

$(7,2)$
 y-coordinate
 y-coordinate

In an ordered pair, the value that is always written second.

